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ON THE ALGORITHM OF THE SOLUTION OF THE SIGNORINI PROBLEM* 

V.YA. ~~SH~HENKO 

An algorithm is proposed for solving the Signorini problem /I/ in the 
formulation of a unilateral variational problem for the boundary functional 
in the zone of possible contact /2/. The algorithm is based on a dual 
formulation of Lagrange maximin problems for whose solution a decomposition 
approach is used in the following sense: a Ritz process in the basis 
functions that satisfy the linear constraint of the problem,thedifferential 
equation in the domain, is used in solving the minimum problem (with 
fixed Lagrange multipliers); the maximum problem is solved by the method 
of descent (a generalization of the Frank-Wolf method) under convexity 
constraints on the Lagrange multipliers. The algorithm constructed can 
be conisidered as a modification of the well-known algorithm to find the 
Udsawa-Arrow-Hurwitz saddle points 13, 4/. The convergence of the 
algorithm is investigated. A numerical analysis of the algorithm is 
performed in the example of a classical contact problem about the in- 
sertion of a stamp in an elastic half-plane under approximation of the 
contact boundary by isoparametric boundary elements. The comparative 
efficiency of the algorithm is associated with the reduction in the 
dimensionality of the boundary value problem being solved and the 
possibility of utilizing the calculation apparatus of the method of 
boundary elements to realize the solution, 

1. Solution of the generalized Signorini problem in the domain GC I?, with a suf- 
ficiently smooth boundary S reduces f2/ to solving a variational problem for the boundary 
functional 

F(q)=+ 5 t(“) (q) rp ds -f- j tcv) (u*) cp ds 
s, 8, 

(*.*I 

on the boundary of p0ssibl.e contact S,CS with unit internal normal vector (v). The functional 
F(cp) is determined in a convex closed set /2/ 

V*(&)= (CpEr W:"'(S,)~Cp~"~]S,>O) WI 

where W,*'i. (S,) C W,';z (S,) is a subspace of traces of the displacement vector p(x), XEG on 

S1 that satisfy the linear constraints of the variational problem for F(q) in the form of 
the equalities 

Aq=Oin G, t@')(@Ia,=O, S,=S 1 S, 
(1.3) 

and the conditions 

S@G=S rotg,dG=O 
c G 

(the smoothness of the boundary S is here and henceforth assumed to be such that the theorem 
on traces holds). By virtue of the Betti formula /S/, we have for such vector-functions 

Stc")(cp)tpds=O++~cpO 
a, 

w (cp) is the quadratic form of linear elasticity theory /5/) so that the boundary norm in 
Wz*'h(S,) is taken equal to /2/ 
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(1.5) 

The unique solvability of the problem of minimizing the functional (1.1) in the set 
v* (S,) is proved in /2/ and it is established that its solution 'pO= \'*(S,) is a solution 
of the following unilateral boundary value problem for the displacement vector 'pO: 

Here and above l(V) (u*) is a given surface stress vector in the zone of possible contact 
s,. The displacement vector u*(x),x~G, which is considered to be known, is /Z/asolution 
of the auxiliary mixed problem of elasticity theory with zero boundary condition for u* in 
the zone of possible contact. The mechanical interpretation of problem (1.5) corresponds to 
the problem of the equilibrium of an elastic body 6 resting on a certain stiff surface 
without friction at points of the boundary of S, and subjected to surface stresses t'v) (II*) 
in the zone of possible contact when there are no mass forces. 

A dual variational problem to the problem of minimizing the functionalF(cp)on T:* (,'j,) is 
formulated in /2/ by using the Young- Fenchel-Moro transformation /4/ in terms ofthe surface 
stresses in the zone of possible contact. The difficulty of a practical realization of the 
solution of this problem is due to the difficulty in constructing the function of the dual 
problem in explicit form. Consequently, the method of Lagrange multipliers is used to formu- 
late the dual problem below. 

2. Furthermore, to simplify the discussion we will considerthe Signorini problem for a 
second-order scalar elliptic operator with symmetric bilinear B(u. U) and positive-definite 
quadratic form R(u) (see /l/, p.115), in which case the results are extended in a natural 
manner to the formulation of the Signorini problem for the linear elasticity theory operator 
of Sect.1. 

The convexity constraint is given by a closed convex set of scalar functions (similar to 
(1.2)) defined on the whole domain boundary 

Ii* (S) = :u Z W,*">(S) I u 1.9 > 0) 

where PVZ"l*(S)'_ W;"(S) is a subspace of traces of the scalar functions v in S that satisfy 
the equation AU = 0 in G; the norm in the subspace *" W, ( S) is defined /6/ by the expression 
(similar to (1.4)) 

I[ v III;), s = {S a,,vv ds} ’ II: (2.1) 

(here and henceforth, unless otherwise stated, the integration is over the boundary S), and 
a,, = aI&, is differentiation with respect to the direction of the conormal v,, (the subscript 
A is henceforth omitted). 

The Signorini problem in the formulation presented in /1/ can be reduced, as in /2/, to 
a minimization problem for the functional 

in the set V* (S). 
The solution moE V* (s) of the variational problem for the functional F,(rp)is the 

solution of the following unilateralboundaryvalue problem (similar to (1.5)): 

-4~~ = Oin G, 'pO IS 2 0, [&rpO + a,~* IS s o 

'PO h%(Po + a&*1, = 0 
(2.3) 

Since F,(cp)is a strictly convex functional and V* (S)is a convex closed set in W,"lz(S), 

the problem in finding 

inf FO (cp) (2.4) 

'p E v* (S) 
is solvable uniquely /7/. 

We will now formulate the dual problem and we present (with or without proof) assertions 
corresponding to theorems for the equivalence and existenceofa saddle point /7/. 

Let 
A(S) = {h I h E w; ‘I* (S), h> 0) 
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be a set of Lagrange multipliers such that 

where <,) is the duality ratio in e&(S) x k$$Ys(s). 
Then the problem of determining 

inZ suPh {F, (cp) + <--h, cp>) (2.5) 

(the direct formulation) is equivalent (as is confirmed directly) to the initial problem (2.4). 
Here and henceforth inf, and sup% mean 

Inf, SUP 
ww:1”(S) ?&A(S) 

Following /J/ (pp.214-2X), it can be shown that the problem dual to (2.5) will be the 
problem of determining 

suPh in& {F, (9) + C---h, cp>} (2.8) 

and the saddle point {cpo,h,,} E fl"(s) X n(S) of the Lagrangian 

L (cp, h) = F* (9) - <A, (P> 

is determined by the condition 
(2.7) 

for whose proof the Hahn-Banach theorem is used /7/. 
It follows from (2.8) that the relationships 

min, maxA L(cp,I) = maxk mine L (cp, 1) = F, (rpO) (2.9) 

hold, where the quantity F,(tpo)= 
equation F,' (cpo,$)= 0, V*E Wz*‘/* 

-l/as&@prtp,,& is found from the generalized Euler-Lagrange 
(S) for the functional F,(m) (2.2). Interpretation of 

inequalities (2.8) shows that the argument m. of the saddle point {cpc,X,} is a solution of 
problem (2.3). 

Indeed, it follows from the right inequality in (2.8) that the (Fre/chetl derivative of 

L (% &I) vanishes at the point mo, which yields, for sufficiently regular functions cp and h 

f%i@ds +~~*u*~ds-s~~ ds=O, V+~w:f~' (2.10) 

It hence follows that &rp, i- a&* = A,> 0; the inequality 

<a, CPJ 3 <+$Jpo>, Vh > O (2.11) 

follows from the left inequality in (2.81. 
Consequently, since <k,,cp,> = 0, we have tpo> 0 and cp,l&,tp, i- A..u*l = 0. 
Therefore, the conditions on the boundary in (2.3) are satisfied, and satisfcation of 

the equation AT,, = 0 in G follows from the trace belonging to 'p. Ia E Wr’l (S). We also 
note that the equality &mp, + c?,u* = h, resulting from (2.10) yields an interpretation of the 
Lagrange multiplier X0 which has a definite mechanical meaning in the signorini problem for 
the linear elasticity theory operator (see below). 

We will henceforth examine a solution of the dual problem (2.6) in the form 

maxh min&(cp, h) (2.12) 

3. The following algorithm is proposed for solving problem (2.12). 
lo. For fixed h>O @+a&*) the problem min,L(cp, A) is solved, which reduces to 

solving a variational equation of the form (2.10) 

S~,WW +- S avu*qas--Sahgas=o, VIE w?'*(s) (3.1) 

The approximate Ritz solution 

XEG (3.2) 
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is constructed in coordinate functions in the form of double-layer potentials 

where {St) is a sequence of fairly smooth linearly independent functions defined at the 
points y=S; completeness of (9,) in L%(S) is assumed. The functions fiil{z) are allowable 
functions of the problem min,L(q),h) by virtue of the known /8/ properties of the boundary 
potentials, namely 

Afli (s) = 8, V.ZCZ G, Pi Is = ql(y), try E s 

Therefore fit 1s E W:"(s) and the approximate solution (3.2) has the following form at 
points of the boundary S: 

We obtain a system of linear equations to determine the coefficients ai (for each fixed 

n> 0, h# a&*) from (3.1) 

~a,S~~~i~xdS=-Sa.u*~~dsiS).IPkds, (3.3) 
i+ 

k==l,...,n 

The matrix of this system with the elements 

where IJ,,, s is the scalar product in WrA(S) corresponding to the norm (2.1)) is symmetric 
and positive-definite. Therefore, system (3.3) is uniquely solvable. Hence; the first part 
of the algorithm is realized. 

2O. The problem max~L(~~,h) is solved, where L (cpi., h).= mio, L (rp, h) and 'p;r E q(h) is 
the argument of the saddle point for a fixed Lagrange multiplier h>O; (ph e W:‘h(S). 

Let us calculate L(cp~,h). For II, = (PA we obtain from (3.1) 

We then have from (2.7) 

Therefore, taking account of Eq.(3.4) the dual problem (2.12) reduces to minimization 
problem 

(3.5) 

where c#. are determined from the variational Eq.(3.1) for the set fh}, h> 0, iL+= f&u*. 
We will use the notation 

@(a) = <A, (Ch> - S&u*cp& (@ (9 +o) 

By virtue of (3.4) (for sufficient regularity of A) we have 

@(A) = S&.&s= // 9%. il~_s >o, V%#O 

(see (2.1) f, i.e., Q(k) is a strictly convex functionaland A(S) isa closed convex set /7/ 
in dual space W,-'i&(S). Therefore, the problem min)"@(h) is uniquely solvable. 

It can be established that ruini (P(h) = @(h,). 
Indeed, it follows from the left inequality in (2.8) for the function L(cpr.,h) with 

cpi. = 90 that maxk L (p,, h), which means (by virtue of (3.5)) also mink (b(h) is achieved 
at the point h, 1~ A (5’) and equals 
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Finally, taking account of the factor -'/,in (3.5), we obtain 

which corresponds to (2.9). 
To solve the problem maxh L((~h,h), which reduces to the problem mink @((h), an algorithm 

of the descent method is used, which is a generalization of the Frank-Wolf method for the 
case of convex constraints h> 0 (/7/, p.130). The passage from the iteration h,to h,,, is 
realized as follows: on selecting the initial approximation h(O) > 0 

h m+1=& + P&,, h,>O, m=l,2,... (3.6) 

For h = h ,>O let the Ritz approximations (cp+,},=,,,.... be constructed according to Sect. 
lo. In order for the pair ((Px~". h,} to be an approximate saddle point L(cp,h), satisfaction 
of the following inequality is necessary (analogous to (2.11)) 

0m~ (P&n) < (1, (Ph,?l)Y VhE A(S) (3.7) 

which ensures satisfaction of the left-hand side of relationships (2.8) defining the saddle 
point. The right-hand side of this relationship is satisfied since (PA,,,,, is a Ritz approximate 

solution of the problem of finding min, L(cp,h,). The descent direction P,,, and the step pm in 
the iteration process (3.6) are selected according to well-known recommendations (/7/, p.227). 
First p,,, E A(S),is determined such that inequality (3.7) is satisfied in the form 

((PX,rll P, -B,<O, VPEA(S) 

in particular for fi = h,. The step 

prn=min(l, --c?<((PL,~, B,-- Q), a,>0 (p,# i) 

is then calculated, where CO is a fairly large fixed number. Therefore, we obtain the 
iteration h,,, according to (3.6) for the descent direction CL,,, = b,,, -A,,, and the step pm. 
The condition to halt the iteration process (3.61, which is of practical interest for solving 
the Signorini problem of elasticity theory in Sect.1, is presented in Sect-S. 

4. We will now justify the algorithm proposed. It follows from the constructions 
presented in Sect.3 that for each fixed he {h} approximations 9x,, of the form (3.2) are 
approximations of the Ritz process of the problem min,L(p,h). Indeed, it is sufficient to 
confirm satisfaction of the conditions to which the basis functions are subject in the Ritz 
process (/5/, p.96). It should here to taken into account that linearity of the integral 
operator of the boundary double-layer potential type and the assumed completeness of the 
sequence {St} in L,(S) ensure the basic character in L,(S) for the sequence {fit}. Thus: 

a) For any n, the elements fir, &,, . . . . fin are linearly independent; 
b) The traces pi/a are elements of the energy space of the functions Wa*‘l* (S); indeed 

(see Sect-L), the subspace W,*‘ll(S) allotted to the norm (2.1) can be considered as an energy 
space of traces in S for sufficiently smooth functions satisfying the equation Acp = 0 in G; 

c) The sequence {& Ia} is complete in the norm in W,*‘p(S); this follows from the 

completeness of (&Is} in L,(S) and positive-definiteness of the form S &cpqds on the basis 

of known results (/5/,p.366, Theorem 1). 
According to Sect.2, the min,L(cp,h) (for fixed h) is achieved atthepoint 9~ E CA(S). 

Then by using the results on the convergence of the Ritz process from /5/ (on the basis of 
a)-c)), it can be asserted that the convergence 

holds. 
According to /7/, the iteration process (3.6) of the solution of the problem of finding 

maxhL (cpa, V converges so that 

lim ii & - A, II+. s = 0, -0I II *ll-v.. 8 = ll *ilw,~hcs, (4.2) 

where ho is the argument of the saddle point {cp,,,h,}. 
A theorem on the convergence of the algorithm is proved on the basis of (4.1) and (4.2). 

Theorem. A family of problem min&(cp,h,) and a set of approximate solutions 
+P" (hrn, r)}- m=?.a,..., 

0P)A*ll= 
such that for each fixed h= k,C {&,,,} the convergence g~i,,,,--,(p~ occurs 

as A+ m in the sense of (4.1) , correspond to the sequence of iterations {hm}mll~.r..... Then 



if a, --f a, as m-+x in the sense of (4.2), then ~J,,,-'(P~ as m -> x in the norm in 

wp (S). 
PrOOf. We obtain two equalities, respectively, from (2.10) for II, = cp - cpO and from 

(3.1) for 9 = Cp- qhm. We set cp = (phm in the first equality, and 'p = 'pO in the second and 

we subtract. We then obtain 

By virtue of (2.1) the left-hand side of (4.3) equals /j(p~--q~(~,~,/i~~,s. 

Using the generalized Schwartz inequality for the right-hand side of (4.31, we obtain 
the inequality 

n 'PO - 'ph, /I%, s < II %I - %?I il-% s 

from which on satisfying (4.2) it follows that lim //mo-fp,, ljlj:,s = 0 as m-m. 
The convergence ?px --se as m-s also occurs in the norm in the Sobolev class of 

functions W,I(G) to whic'l the generalized solutions of boundary value problems for second- 
order equations belong. 

Indeed, for functions satisfying the equation Arp= 0 in G the equation 

follows from Green's formula and (2.1). 
The estimate /S/ 

S('?f~cII~/&? c>O, ~‘~~~G=~~‘~~~~G~ 

holds for the positive-definite quadratic form B(T), therefore from 1191@,+,a Zcllcp& and for 

II ‘PO - ‘PA, II’,.. s --u (m-.m)the convergence l('~~---~m I~,~-.o follows as ~-C-J. 

The algorithm constructed can be considered as a modification of the well-known algorithm 
(see /3, 4/, say) for finding the saddle points of Lagrangiens by UdzaWa-Arrow-HurWitz since 
for alternate utilization of the Ritz approximation {mn}_,,2,... and the iterations {hmfm=r,s,.., 
the value of the functional ~(~~~~,a~) tends to L(cp,,h,) as m, n-+co, where {tp,,h,f is 
the saddle point of the Lagrangian L(q,k). 

We also note that by virtue of the equation h = &gph -+- a&* which follows from (3.1) 
where rpi,,Is = Xal(h)$r(y), the expansion of the multipliers h in a system of functions {&7p1) 
is of definite interest for an appropriate foundation. A similar algorithm for constructing 
approximate values of the saddle points is proposed and proved in /9/. 

In general the possibilities of applying the proposed algorithm are constrained to 
boundary value problems for which Green's function exists, but if it is taken into account 
that Green's function is required in explicit form to obtain a solution at points of the 
domain in the boundary values found, then contact problems of linear elasticity theory in 
which the displacement and stress distribution must be found in the contact zoneareapossible 
domain of application of the algorithm. For such problems satisfaction of the conditions 
imposed on the data of the problems for which Green's function exists /8/ is sufficient, and 
its construction in explicit form is not essential. 

In connection with this remark we note that the duality different from the algorithm 
elucidated, which utilizes Green's function for the integral relation of the contact pressure 
with the displacements in the contact zone , is represented in /lo/ for the solution of contact 
problems of elasticity theory. 

5. The constructions elucidated in Sects.2-4 are extended to the generalized Signorini 
problem for the linear elasticity theory operator (in the formulation elucidated in Sect.1, 
see /2/ also), which reduces to the problem of minimizing tine boundary functional (1.1) in 
the set V*(S,). The solution q+,~V*(sr) of this problem satisfies the variational in- 
equality /2/ 

St@+p,)(v --Jds> - jt(“)(u*)(v-gQds, VVE V*(&) 
St 

Since the set V*(S,) (see (1.2)) is a closed convex cone /2/ with apex at the origin, 
this inequality is equivalent /3f to the relationships 

s t(",(rp,)vds > - 1 @)(u')v ds, Vv CTZ V*(,S,) 

s t(‘) (cpo) ‘PO ds = - $ P) (u*) ‘p. ds, ‘p. E v* (q 
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(here the integration is over S,). By virtue of (1.4) St(v) (u*) , I,&> 0 follows from the 

second relationship. Since g@') ]a,>& this inequality id satisfied ifthegiven stress 

vector satisfies the condition @)(u*) /a,< 0 in the contact zone, which corresponds to the 

solvability condition for the variational problem for the functional (1.1) in the set V*(S,) 

/I/: 

J 
W(u*) p ds GO, VEER n V+(S,) 

where R, the subspace of stiff displacements , isthekernel of the quadratic form of linear 

elasticity theory 2@(V)&, and the equality sign in this condition will hold only if p is 

vector of the bilategal displacements of points of the contact boundary S,. 
The mechanical interpretation of the Lagrange multiplier A,, (see Sect.2) follows from 

the equality V)(cpO) + @(u*) = h,. Namely, since W) (u*) <O and ho230 (see (2.8)), b, is 
the intensity of the distributed normal reference reaction at points of the set (unknown a 
priori) S,OCS, in which body contact with the reference surface exists and mpo@? Isto = 0. 

We will investigate the possibilities of the algorithm constructed in Sects.3, 4 fsom 
the viewpoint of determining the stress in the zone of possible contacts,. For a certain 
h=l,>O let the Ritz approximations {~JL,~},,=~,~,.., of the solution of the problem min,L(cp,, 
a,) be constructed from a variational equation oftheform (3.1) in which the derivatives 
&pn and &I* are, respectively, the vectors of the surface stresses VV) (9%) and t(V) (u*). 
We show that the sequence {t(v) GPP.~+M~~~~~~ converges as n,, m - = in the sense w,-%(s,) 

to t(V)@,)-thestress vector in the contact zone S 1 that corresponds to the exact solution 
'pO EV* (S,) of the unilateral variational problem for the functional (1.1). Indeed, accord- 
in9 to (4.1)) I(PQ - cpi,. 1 -+Oholds for each h, as n- =, where the norm is defined accord- 
ing to (1.4). 

/2, 6/ I] t(") (cp) 
The-n by virtue of the imbedding theorem W,*‘J*(S)c W,+(S) and the estimate 
11 Jh, 8, < Cl I 8, I'/& Cl > 0 we have II t@) h_,$ - W ((ph,) Il.+,, S, -+ 0 as n-+00. 

Furthermore, 

II ho - 
since the equality &--I, = t(rt((Po)--tfY)((F~,), holds, then from (see (4.2)) 

b It-v2, s, -+ 0 as n-*w, the convergence of 

II t@f f%J - w (cpr m ) II - 0. 
-‘lo 81 

as follows. 

Remark. Certain complications of a technical nature are caused by the conditiontfi)(a)la = 
0 (see (1.3)) to which the allowable functions of the variational problem for the function$l 
(1.1) should be subjected. But if this functional is taken in the form (first integral over 
all S) 

PI (cp) = + a ’ P) (9) p ds + 
j 

l(V) (u*) cp ds 

1 

the condition mentioned is a natural condition for the minimization of F,(cp). 
Realization of the proposed algorithm was examined in an example of the classical plane 

contact problem of the insertion of an absolutely stiff stamp into an elastic half-plane 
(without taking account of friction). The normal stress vector in the contact zone P)(U), 
which is considered known and should satisfy the condition t@')(u)Ia < 0 in the formulation of 

the unilateral boundary value problem (1.5) (the vector t(V)(u) is not associated here with 

the formulation of the auxiliary mixed problem of elasticity theory for the displacement 
vector u*, see Sect.11, was here given thus: t@)(~)= --p, where p(y) 70 is a function of the 
normal contact pressure under the stamp with definite surface geometry of the stamp in the 

contact domain during the action of a force P= P(Y) &, on the stamp, where the integration S 
is over the width 2a of the possible contact zone that is symmetric relative to the stamp 
axis /ll/. For certain surface shapes constraining the stamp base , the functions p(y) obtained 
by methods of the theory of complex variable functions are presented in /ll/. For a given 
vector 6') (u) = -_p in the formulation oftheabove-mentioned contact problem, numerical 
analysis of the algorithm elucidated in Sect.3 for the solution of this problem reduces to 
an analysis of the approach of the integral 



to zero as the number of iterations 
Theoretically the convergence 

convergence (Fl,,n -~~,,,VB, E A&) in 

of (4.2) as well as the convergence 

m and the number of Ritz approximations n increase. 
('Px~~. b,> 4 <'Fan bo) = 0 holds as m,n-CO, since from the 

the sense of (4.1) and the convergence A,,,- liOin the sense 

PA + q0 in the sense of mm-59 
W:"~(S,) (see the Theorem of 

Sect.4)) there follows the above-mentionea convergence in the sense of the ratio of the 
daulity in WY/* (S,) x W;"* (s,). 
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In constructing the Ritz approximation, the contact boundary & was approximated by 
isoparametric curvilinear second-order boundary elenents (BE). The construction and foundation 
of the boundary-element approximation ofthevariational problem for a boundary functional of 
the form (1.1) by using basis functions of the double-layer boundary potentialtypeispresented 
in /12/. 

The condition to terminate the iteration process was given thus 

(5.2) 

where e isagivenpositive number-governing the required accuracy oftheiteration process 
in L for a fixed number n of BE ASi. 

For a circular stamp contained within the limits of the possible contact zone s1 of the 
curve f(p)= y"/(2R) (under the assumption that the radius of the stamp base is large compared 
with the size of the contact area), the function ofthegiven contact pressure p(y) was taken 
from /ll, p.65/. Two modifications of the contact boundary partition into BE were examined 
forthegreatest assumed depth of stamp insertion h = 0.02R (along the Stamp aXiS Of Symmetry) 
and a corresponding possible contact zone halfwidth n = 0.2R. For six elements and s= 5 x10-2 
in condition (5.2), the greatest error (at the point y= o on the stamp axis of symmetry) 
in thevalues of p and t(V) ('F&n) was 6= 16% (m= 14). The following values of the error were 

obtained for twelve elements:ij=. 14.5% fore= 5x10-2 (m = 18); 6_8%for a= 10-a (m = 29); 
6~1.5% for e= IO+ (m= 55); the calculations were performed on an ES-1022 computer. It is 
established that an increase in the number of iterations m affects the decrease of 5 to a 
greater degree than an increase in the number n of BE. 

The example considered is substantially confirmatory for the proposed algorithm in the 
sense that the solution p(y) of the contact problem by the method of the theory of complex 
variable functions /11/ is compared with the solution t(')(qkn) of this problem as a unilateral 

variational problem for the boundary functional (1.1). 
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